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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

In this paper we shall examine a generalization of the classical problem of
approximation in normed linear spaces which we will call "vectorial approxi
mation." Sections 1 and 2 contain a statement of the problem, examples,
and some topological considerations used in the general theory. In Sections 3
and 4, the questions of existence, uniqueness and characterization are
answered for special types of vectorial approximation.

Let Xbe a linear space of real-valued functions on [a, b], Yan n-dimensional
subspace of X, and let Li be linear operators on X, for i = I, 2, ... , k. We
denote by I • Ii an (abstract) norm on Xi = {L;(x), x EX}, i = 1,2,... , k.
A vector-seminorm (/I . II, :S;;') is defined as follows:

for x E X,

and II Xl II :S;;' II X 2 Ii, where Xl , X 2 E X, if and only if I Li(x1)li :S;; I Li(x2)li
for all i = I, 2, ... , k. If at least one Li is the identity operator, (II . II, :S;;') will
be called a vector-norm. Given a basis {Yi} of Yand an XE X, we will say that
a = (AI' A 2 , ... , An) or Yex = L:I AiYi is a vectorial approximation to x.
We define Fia) = II X - Yex II. We call a or Yex a best vectorial approximation
to X if Fia) is a minimal point of the range of F, i.e., if there is no fJ E £n
such that F",(fJ) :S;;' Fia) and F",(fJ) # F,ia).

For notational convenience, we shall use the absolute value symbol I • I
to denote ordinary (real-valued) norms. The symbol 1/ • II we will reserve for
vector-valued norms and seminorms. If K is a subset of Euclidean n-space En,
the symbol FiK) will represent the set {Fx(a) : a E K}. We will denote by
M(K) the set of minimal points of Fx(K). Where the meaning is clear, we shall
write M and F(a) instead of M(En) and Fx(a). The problem of vectorial
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approximation is, roughly, the study of the equation F(rx) = fL, for each
fL E M. In way of justification of the terms "vector-norm" and "vector
seminorm" we note the following relations which are easy to verify:

k
~

(0, 0, , 0) :::;; . II x II,

(0, 0, , 0) = II °Ii,
II OX II = I 0 III x II,

II x + y II :::;; . II x II + II y ii,

for all x, y E X and all real e. Furthermore, if at least one Li is the identity
operator, then il x II = (0,0, ...,0) implies x = 0.

2. EXAMPLES AND A GENERAL THEORY OF VECTOR-NoRMS

In the following examples [(a)-(e)] of vectorial approximation, let X be
(quite arbitrarily) the space C7[0, 1], let Y be the class of polynomials of
degree :::;; 5, and let x E X.

(a) Approximation of a function with respect to two norms.

I • 11 = Chebychev (sup) norm,

I • 12 = V norm,

L1 = L2 = I (identity).

(b) Approximation of a function and its derivative with respect to the
Chebychev (sup) norm.

I . 11 = sup norm,

I • 12 = sup norm,

~ = I,
d

L 2 =dx'

(c) Approximation of a function in LP norm, and its seventh derivative
in V + sup norm.

I . 11 = LP norm,

I . 12 = (V norm) + (sup norm),

L1 = I,
d 7

L2 = dx7 '
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(d) Approximation of a functionJin the sup norm, of l' in V norm,
and ofJin U.

I . 11 = sup norm,

1'12 = V norm,

l'la = Unorm,

L1 = I,

d
L2 = dx '

La = I.

DEFINITION. Given E ;;?: 0, g(x) is said to E-interpolatef(x) at Xl , X2 ,... , Xm

iff:L:1 If(Xi) - g(Xi) I ~ E.
Observe that O-interpolation is the usual interpolation.

(e) Constrained one-sided approximation, weighted E-interpolation and
LP approximation. Require that x(t) - yit) ;;?: °on [0,1]; Yn(t) a polynomial
of degree ~ 5.

I . 11 = LP norm,

I • 12 = sup norm,

I . la = U norm,

L 1 = I,

L. = "a·t·_ L..J 'l Z,

La = I,

where ai are positive weights, and Li are the point functionals defined by
t;(/) = f(Xi)'

(f) Application to model theory.

A standard electronic filter approximates, in the supremum norm, an ideal
input-output characteristic. The number of the so-called lumped parameters
(resistors, capacitors, etc.) equals the number of parameters of the appro
ximation, while the way in which the lumped parameters are arranged (in
series, in parallel, or in some other combination) corresponds to the type of
approximation (linear, rational, etc.). In general, let S be an object we are
interested in simulating by models .A(ex), ex E J (ex is a vector of parameters
which varies over a set J). Let L i be linear operators acting on the .A(ex) and
on S and let I' Ii (i = 1,2,... , k) be a gauge of the goodness of fit of the i-th
simulation feature. We use a minus sign "-;" formally, to be interpreted in



150 BACOPOULOS

context, and the range of each I • Ii is ordered. For example, for some fixed i,
let L i be the color operator, let L;(S) = yellow, and let {L;(ex), ex E J} =

{orange, black, blue, green}. If it is further judged that I(yellow)-i
(orange)li = good, ](yellow) -i (blue)li = I(yellow) -i (green)li = medium,
I(yellow) -i (black)li = bad, we have such an ordering. Briefly, given S,
a model space {A(ex), ex E J}, linear operators L i on S U {A(ex)}, interpre
tations of the binary operations - i (i = I, 2, .. " k) which induce meaningful
orderings on I . Ii, then a best model A(ex) is one for which FsCex) is a "best
vectorial approximation." The realizability of a best model is synonymous
to M(J) being nonempty.

In what follows we prove some general theorems on vectorial
approximation.

THEOREM 2.1. FxCex) is a continuous function of ex.

Proof. Let ex = (AI' A2 ,... , An), f3 = (BI , B2 ,... , Bn). The absolute value
of the s-th component of the k-vector F(ex) - F(f3) is

~ IL sf (Ai - Bi) Yi I ~ max I Ai - Bi I f I LsCYi)I,,·
i s l~l::s;;n i

Ls and the y;'s are fixed; so FxCex) is a continuous function of ex.

COROLLARY. If K is a compact subset of En, M(K) is nonempty.

Proof. F(K) is also a compact subset of £k; so the infima of chains of F(K)
relative to the usual, coordinate-wise partial ordering ~. of Ek are assumed.

THEOREM 2.2. M(En) = M(In),for some cube In C En.

Proof. Define an extreme minimum to be a point (mIS, m2s
"", mkS

) with
the property that infyEy I LsCx - Y)ls = m:. Note [1] that in case, for
some s, L s is the identity operator, there is ayE Y such that I x - Y Is = m ss

and, hence, the extreme minimum is a point of M.
For every s, 1 ~ s ~ k, an extreme minimum (mIS, m2s, ... , mkS) does exist.

Choose one. Now let JL = max{m/ : i = 1,2,... , k, j = 1,2,... , k} and define
Ks = max{l LsCx)ls, JL}. For Y E En in the complement of

A = {y : II Y II ~. 3(KI , K2 , ... , Kk )},

we have I LsCY)ls > 3Ks for some s.
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Therefore,

I LsCx - Y)ls ~ ILsCY)ls - I LsCx)ls ~ 3Ks - I LsCx)! > Ks ~ max m/
I

So, (fLl , fL2 ,... , fLk) = F(y) rf: M(En). Hence, M(En) C F(A). Now, the closed
bounded set A is compact. Therefore, first, the infima of descending chains
in F(A) are assumed, and, secondly, there exists In"J A such that
M(P) = M(In). In what follows, we will write M instead of M(P).

THEOREM 2.3.

(a) F-l(fL) is a convex subset of En,for each fL EO M.
(b) M is closed. It consists ofone point (f and only (f the extreme minima

sats(fy (m l
i , m2i , ... , mki ) = (m/, m2j

, ... , mk j
) for all i,I

Proof of (a). Let F(rx) = F(f3) = fL; then, for °~ B ~ 1,

F(Brx + (1 - B)f3) ~' BF(rx) + (l - B) F(f3) = fL.

Since fL EO M, F(Brx + (l - B)f3) = fL·
The proof of (b) is straightforward. Also, (b) can be strengthened as

follows:

THEOREM 2.4. Let k = 2 and let rxl and rx2 be best (ordinary) approx
imations with respect to I • 11 and I • 12, respectively. If F(rxl) :::j:::. F(rx2) then M
is a Jordan arc.

Proof. See [2], p. 81.
The following theorem is a generalization of the classical case k = 1.

Its complexity stems from the fact that, unlike the case k = 1, compact
connected sets in Ek are generally hard to characterize. Let In be such that
M(In) = M(En) (see Theorem 2.2). For simplicity of notation we denote by S
the compact, connected set F(In) C Ek.

THEOREM 2.5. S is compact, locally connected, arcwise connected, and has
a trivial k - 1 homotopy group, i.e., ilk_iS) = 0.

Proof. Local connectivity follows from the Hahn-Mazurkiewicz Theorem.
Arcwise connectivity follows from the fact that a Peano space is arcwise
connected [7, p. 116].

To prove ilk_iS) = 0, consider the case k = 2. If ill(S) #- 0, there exists
a bounded component H of E2 - S. This component contains a disc D
because of the compactness of S (see Fig. 1).

Let p be the center of such a disc D. Now move D in the N-NE direction
until the N-NE arc of D hits a first point a EO S. By the compactness of S,
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FIGURE 1

N-NE

'Such a point exists. We assume, without loss of generality, that it is not the
midpoint of the N-NE are, for otherwise change slightly the preferred N-NE
direction. From the point a draw a ray L of slope -1 until L hits S at b for
the first time. It follows that there exists a neighborhood N(a) in E2 with the
property that

where

N(a) n (~ (1}(z)) n S = 0, (A)

(I)(z) = {x : x E £2, x :(;;. z},

i.e., the points of L n N(a) are "locally S-W accessible."
Now, by the continuity of F and the convexity of In, there exists a 80 ,

'0 < 80 < t, such that

F(80 cx + (l - Bo)!3) E N(a) n S,

where

ex E F-l(a), f3 E F-1(b).
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However, using (A) and the convexity of F (see Theorem 2.3), it follows that
F(Oorx + (1 - Oo)fJ) rt: S, contradicting the convexity of In.

The method of proof, for k > 2, is identical to that just described, for
k = 2. For k > 2, choose H, again, as a bounded component of Ek - S;
instead of the two-dimensional disc D use a k-dimensional open ball Dk, and
in place of the N-NE are, use the analogous subset of 8Dk chosen in such a
way that the corresponding L will have k - 1 negative directional cosines.

3. CHEBYCHEV VECTORIAL ApPROXIMATION

Chebychev vectorial approximation has been studied by the author in [2];
however, for completeness, we include here a brief statement of results,
without proofs.

Let x E C[a, b] be a function to be approximated and let Y be an
n-dimensional Haar subspace of C[a, b]. That is, Y is an n-dimensional
subspace of C[a, b] such that zero is the only function in Y which vanishes
at n distinct points of [a, b]. We shall assume that the functions YI(t), ... , Yn(t)
form a basis for Y. Let WI , W2 ,... , Wk be continuous and positive (weight
functions) on [a, b]. We define! . Ii by

IZ Ii = sup IWi(t) z(t)j,
tE[a,b]

i = 1,2,... , k.

Define, furthermore, the set Ty "of critical" points of the approximation Y E Y
as follows:

T+i = {t E [a, b] : w;(t)(x(t) - y(t)) = 1 x - Y Ii}'

L i = {t E [a, b] : w;(t)(x(t) - y(t)) = -I x - Y Ii}'

Ty = (~ T+i) U (01 L i).

The existence of best vectorial approximations follows from the linearity
of the approximating class Y (see Theorem 2.2). Proofs of characterization,
uniqueness and the geometry of the minimal set M are given in [2, 3]. Observe
that the following, perhaps surprising, results are generalizations of the
standard theory of Chebychev approximation, i.e., k = 1 [1].

The function Firx) : En -+ Ek and the minimal set M here are as defined in
Section 1.

THEOREM 3.1 (Existence). If fL is the infimum ofany chain in {Fx(rx): rx E en},
then there exists rx E En such that Fx(rx) = fL.
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THEOREM 3.2 (Geometry). Let k = 2 and let CX1 and CX2 be the best
(ordinary) approximations with respect to I • 11 and 1. 12, respectively. Then
the minimal set M is a Jordan arc if and only if CX1 "* CX2 • If CXl = CX2 , M is
a point.

THEOREM 3.3 (Characterization). Let x EO C[a, b] and let y E Y. Then the
following statements are equivalent:

(a) y is a best vectorial approximation to x.

(b) The origin of Euclidean n-space En belongs to the convex hull of
{a(t)i: tEO Ty }, where aCt) = -1 if t EO U:~l L i , aCt) = +1 !f t EO U:~l T+i

and i = (h(t), Y2(t), ... , Yn(t)).

(c) There exist n + 1 points t1 < t2 < ... < tn+! in T y , satisfying
a(ti ) = (_1)i+1 a(ll)'

THEOREM 3.4 (Uniqueness). Each best vectorial approximation is unique,
i.e., given fL EO M, there is only one cx EO En such that FxCcx) = fL.

Observe that the uniqueness of Theorem 3.4 does not preclude the
existence of several best vectorial approximations. In fact, Theorem 3.2
implies that, in general, there will be a whole Jordan arc of best vectorial
approximations. Finally, note that much of this theory holds for more general
approximating classes Y [2, 3].

A simple example which illustrates Theorems 3.1-3.4 is the following:
Let x(t) = t be approximated by constants {cx}, let k = 2, WI == 1, and

\

8 - E

w
2
(t) = -8- t + E,

t,

°~ t ~ 8,

For small 8 > °and E > 0, it is easy to verify that the best approximations
are those cx satisfying t ~ cx ~ - 2 + 2 v2, and that the error of each best
approximation exhibits vector-alternation. It is also seen that M here is the
line segment joining the points

and F( - 2 + 2 v2) = (-2 + 2 v2, 3 - 2 v2).

4. L 2 VECTORIAL ApPROXIMATION

Let X = C[a, b] and let 01 and 02 be two inner products on X which
induce, in the usual fashion, the norms 1 • 11 and I • 12 , respectively. Let Y
be an n-dimensional subspace of X, spanned by an orthonormal (with respect
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to (1) basis ZI , Z2 ,... , Zn' Given x E X to be approximated, we define the
two-dimensional vector-valued function F(a) = II x - y" II by

where y" = L;~1 Aizi . The problem here is to determine the minimal set M
and, given fL E M, to determine all a's which satisfy the equation F(a) = fL.
Observe that such a are generalizations of the classical Fourier coefficients.
The equation F(a) = fL will be shown to have a unique solution a. Further
more, using the method of Lagrange multipliers, a will be given explicitly in
terms of the solution of an algebraic equation in one unknown and of
degree 2n.

THEOREM 4.1 (Existence). If fL is an infimum of the set {F(a) : a E En},
then there exists an a E En satisfying F(a) = fL. Hence M =F O.

Proof This follows from Theorem 2.2.

THEOREM 4.2 (Geometry). M is either a point or a Jordan arc.

Proof This is a special case of Theorem 2.4.

THEOREM 4.3 (Solution ofF(a) = fL). Let x E C[a, b] and fL =(m1, m2) E M.
The solution a = (AI' A 2 ,... , An) is unique and is given by

k=I,2, ... ,n,

where:

N k is the determinant of the n X n matrix {Nu},

N k ' is the determinant of the n X n matrix {N;j},

N~· = INij
tJ M

i

if j oF i,
if } = i,

N ij = bi1bjl + bi2bj2 + ..,+ binbjn

.N ii = b;l + b;2 + ... + b;n + A,

if i oF},

n n n

M m = L (x, Wi)2 bmi - L (x, Zi)1 L bmsbis ,
i~1 i~1 8=1

and where A, Wi and bij will be defined in the proof
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Proof (by construction). Let {Wi} be the Gram-Schmidt orthonormal
sequence relative to (-)2' where Wk = L:=1 akizi . Let {bki } be the inverse
matrix of {aki}. Using standard Fourier theory on the expression
y == x - L Aizi , we have

where

n

Bi = L Asbs;'
8~1

The remainder of the construction is a standard application of Lagrange
multipliers. It involves minimizing (y, Y)2 as a function of ex, where ex satisfies
the constraint (Y, Y)1 = m12

• The resulting ex(A) = (AI' A2 '00" An) is that
given in the statement of Theorem 4.3. A is solved for by substituting the
ex(A) in the constraint equation. This yields an algebraic equation for A of
degree 2n which may be solved by the various standard iterative methods.
The details of this construction may be found in [4].

The uniqueness of ex is seen as follows: From the above constructive proof
it is clear that A, and, therefore, ex can have at most 2n values. By Theorem 2.3,
F-I(fL) is convex, and the result follows.

As a simple illustration of the above, we will compute M and the ex
satisfying F(ex) = fL E M, where F is given by

(f, g)l == r f(t)g(t)dt
-1

and (f, g)2 == r ~(t)g(t) dt.
-1 1 - t 2

Observe that, here, n = 2, x = t 2 and the orthonormal vectors are

1
ZI = v2'

We evaluate

3
Z2 = "2 t,

1
WI = v;'-'

2
W 2 = - t.

7T

(
2 ) _ v2

t ,Zl I - 3 '
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( 2 2) _~t , t 2 - 8 Tf, (
2 )_V:;-
t, W12 - -2-'

[
8 (Tf v2Tf \/:;-)2]

ml E 45' 8 + 3 vi - -2- .

Substituting into the constraint equation (AlF = ml - (8/45), we get for
F-l(M) the set of all (AI' A2) given by

(
V2 8 )1/2

Al = T - ml - 45

Also, the coordinates of M are given by

5. COMMENTS AND UNSOLVED PROBLEMS

Note that, perhaps surprisingly, much of the classical structure extends to
the vectorial context in the cases of the best understood approximation spaces,
namely Chebychev and L2. One can, of course, generate a plethora of
unsolved problems by specializing the norms and the operators. Two such
interesting problems are

1. Characterize all best vectorial approximations with respect to a
vector-norm composed of a supnorm and an L2 norm.

2. Characterize all best vectorial approximations with respect to a
vector-norm composed of the sup-norm of a function and the sup-norm of its
derivative (see related work of P. J. Laurent, Num. Math. 10 (1967)).
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